最新消息:Welcome to the puzzle paradise for programmers! Here, a well-designed puzzle awaits you. From code logic puzzles to algorithmic challenges, each level is closely centered on the programmer's expertise and skills. Whether you're a novice programmer or an experienced tech guru, you'll find your own challenges on this site. In the process of solving puzzles, you can not only exercise your thinking skills, but also deepen your understanding and application of programming knowledge. Come to start this puzzle journey full of wisdom and challenges, with many programmers to compete with each other and show your programming wisdom! Translated with DeepL.com (free version)

python - Llama using up all RAM storage causing kernel to die - Stack Overflow

matteradmin9PV0评论
import os                       
import torch                    
from datasets import load_dataset
from transformers import (
    AutoModelForCausalLM,
    AutoTokenizer,
    BitsAndBytesConfig,
    TrainingArguments,
    pipeline,
    logging,
)
from peft import LoraConfig
from trl import SFTTrainer


dataset = load_dataset("csv", data_files="dataset/data.csv")

base_model = "meta-llama/Llama-3.2-1B"
compute_dtype = getattr(torch, "float16")

# Configure memory-efficient quantization
compute_dtype = getattr(torch, "float16")
quant_config = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_quant_type="nf4",
    bnb_4bit_compute_dtype=compute_dtype,
    bnb_4bit_use_double_quant=True,  # Enable double quantization
)

model = AutoModelForCausalLM.from_pretrained(
    base_model,
    quantization_config=quant_config,
    device_map="auto",  # Let transformers handle device mapping
    torch_dtype=torch.float16,  # Use fp16 for model weights
    low_cpu_mem_usage=True,    # Enable memory optimization
)

torch.cuda.empty_cache()
model.config.use_cache = False
model.config.pretraining_tp = 1


# Configure PEFT using LoRA for efficient fine-tuning of the model.
peft_params = LoraConfig(
    lora_alpha=16,    
    lora_dropout=0.1, 
    r=8,              
    bias="none",       
    task_type="CAUSAL_LM",
    target_modules="all-linear",
)

training_params = TrainingArguments(
    output_dir="./results",
    num_train_epochs=1,
    per_device_train_batch_size=2,  
    gradient_accumulation_steps=2,   
    optim="paged_adamw_8bit",    
    save_steps=50,
    logging_steps=50,
    learning_rate=2e-4,
    weight_decay=0.001,
    fp16=True,                   
    bf16=False,
    max_grad_norm=0.3,
    max_steps=-1,
    warmup_ratio=0.03,
    group_by_length=True,
    lr_scheduler_type="constant",
    report_to="tensorboard",
    gradient_checkpointing=True,   
)


tokenizer = AutoTokenizer.from_pretrained(
    base_model,
    padding_side="right",
    truncation_side="right",
)
tokenizer.pad_token = tokenizer.eos_token

trainer = SFTTrainer(
    model=model,
    train_dataset=dataset['train'],
    peft_config=peft_params,
    dataset_text_field="input_text",
    max_seq_length=512,
    tokenizer=tokenizer,
    args=training_params,
    packing=False,
)

trainer.train()

I am using the above code block to fine tune Llama 1-B parameters using my PC which has 128 GB RAM and a 4090 GPU. Accordingly the PC has all the requirements met for the model but while executing the trainer = SFTTrainer(....) line the RAM gets filled up and the kernel dies which is unexpected. The dataset size is only 10 GB with 7400 rows of data. Would be glad if anyone could help me solve this issue. The error traceback is like this (it uses up all the 128GB memory and the terminal is shut down)

Deprecated positional argument(s) used in SFTTrainer, please use the SFTConfig to set these arguments instead.
  warnings.warn(message, FutureWarning)
/home/.../python3.10/site-packages/trl/trainer/sft_trainer.py:300: UserWarning: You passed a `max_seq_length` argument to the SFTTrainer, the value you passed will override the one in the `SFTConfig`.
  warnings.warn(
/home/.../python3.10/site-packages/trl/trainer/sft_trainer.py:328: UserWarning: You passed a `dataset_text_field` argument to the SFTTrainer, the value you passed will override the one in the `SFTConfig`.
  warnings.warn(
Map:  14%|██████████████████▍                                                                                                                    | 1000/7346 [02:59<18:56,  5.58 examples/s]
Killed

I tried all the changes and configuration I could find on Google and previous relevant Stack Overflow blogs but none of those solved the issue.

Post a comment

comment list (0)

  1. No comments so far